Photosynthetic Properties of Permaplasts of Anacystis

Abstract
A treatment procedure using lysozyme and ethylenediaminetetracetic acid gave intact but permeable cells (permeaplasts) of Anacystis nidulans. Rates of electron transport from water to carbon dioxide, ferricyanide, 2,6-dichlorophenol indophenol, benzoquinone, and methyl viologen, and from reduced indophenol to methyl viologen were measured as a function of treatment time. Rates of oxygen evolution in complete photosynthesis and electron flow from water to methyl viologen showed rapid and parallel decline with treatment time. Electron flow from water to ferricyanide and from reduced indophenol to methyl viologen increased during the first half hour of treatment (phase 1) to 60 to 80% of the original photosynthetic rate. Longer treatment (phase 2) resulted in decreased rate of ferricyanide reduction but not in rate of methyl viologen reduction from indophenol. Electron flow from water to quinone was two to three times higher than for complete photosynthesis in intact cells. It remained high during phase 1 and declined during phase 2. Phase 1 permeaplasts apparently retain high activity for photosystems 1 and 2 photoreactions.