Abstract
An experiment has been completed which demonstrated quantum mechanical tunneling of electrons between two gold electrodes separated in vacuum. The tunneling current between the gold electrodes has been measured, for fixed voltages of 0.1 and 0.01 volts, as the electrode spacing was varied from a distance of approximately 2.0 nm down to a point where the electrodes touched. Current changes of over five orders of magnitude were found for electrode spacing changes of approximately 1.2 nm. For the first time, these data enable one to deduce the work function of the electrodes in a tunneling experiment from experimental parameters independent of the tunneling device. Also obtained were current-voltage characteristics for fixed electrode spacings in the direct tunneling region where electrode spacings were less than 2.0 nm. An analysis is given which attempts to deduce an absolute electrode spacing and tunneling area from the nonlinear properties of the I-V data and the current versus spacing data. The analysis suggests that van der Waals and electrostatic forces play a major role in determining the I-V characteristics and that the tunneling area may be as small as 10−16 m2. Along with a review of the theory of work functions and quantum mechanical tunneling, numerical calculations of the tunneling current based on the free-electron model of the electrodes and the barrier, an image-potential reduced barrier, and a WKB approximation for the tunneling probability have been performed and compared with Simmons’ theory and with the experimental results.