Abstract
Gas exchange studies in Parthenium hysterophorus L., a weed recently introduced into central Queensland, indicate that its limits of distribution may be very wide in the humid and subhumid regions of Australia. Under conditions of high leaf water potential, the maximum rate of apparent photosynthesis of cabinet-grown plants was 77 ng cm-2 sec-1, with a temperature optimum of 28°C. Gas phase diffusive resistances were very low and insensitive to photosynthetic photon flux density at high water potentials (–5.0 bars), but became greater and quite sensitive to photon flux as the leaf water potential approached –20 bars. At temperatures between 10 and 40°C, transpiration increased slightly, and the dark respiration rate was almost constant, owing to a steady and considerable increase in gas phase diffusive resistance with temperature. The control of gas exchange broke down at about 42°C, so that transpiration in the light and dark proceeded at equal rates, and dark respiration rates were very high. Gas exchange in P. hysterophorus appears to be no more sensitive to reduced water potential than it is in several favoured crop and pasture species, but the distribution of this weed may be limited by even brief exposure to very high temperatures, or by prolonged drought.