Light and electron microscopic histochemistry of the monoamines in the human foetal sympathetic ganglion in culture

Abstract
Sympathetic ganglia of 13 to 19-week-old human foetuses were cultured in small pieces with and without nerve growth factor for up to 5 weeksin vitro. The cultures were studied using phase-contrast, fluorescence and electron microscopy. Monoamines were demonstrated with the formaldehyde-induced fluorescence method, with and without pretreatment of the cultures with catecholamines or monoamine oxidase inhibitor. In the long-term cultures, primitive sympathetic cells, sympathicoblasts of types I and II, and young sympathetic neurons showed a fine structure identical to that described earlierin vivo. There were virtually no satellite or Schwann cells in the cultures. The neurons showed a considerable capacity to grow new nerve fibres in culture, even without nerve growth factor. Nerve terminals with accumulations of other nervous structures. Large granular vesicles were regularly found in the sympathicoblasts after glutaraldehyde-osmium tetroxide fixation. After permanganate fixation, dense-cored vesicles typical of adrenergic neurons were not seen, either in the perikarya, or in the processes, although it was possible to demonstrate specific fluorescence. No small intensely fluorescent (SIF) cells were observed. Variable formaldehyde-induced fluorescence was observed in the nerve cell perikarya and nerve fibres. The intensity of the fluorescence increased after treatment of the cultures with monoamine oxidase inhibitor and after incubation with catecholamines.

This publication has 54 references indexed in Scilit: