Abstract
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 μmol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 μmol min−1 g−1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia. To function properly over a range of work rates, the heart must maintain its metabolic energy level within a range that is narrow relative to changes in the rate of energy utilization. Decades of observations have revealed that in cardiac muscle cells, the supply of adenosine triphosphate (ATP)—the primary currency of intracellular energy transfer—is controlled to maintain intracellular concentrations of ATP and related compounds within narrow ranges. Yet the development of a mechanistic understanding of this tight control has lagged behind experimental observation. This paper introduces a computational model that links ATP synthesis in a subcellular body called the mitochondrion with ATP utilization in the cytoplasm, and reveals that the primary control mechanism operating in the system is feedback of substrate concentrations for ATP synthesis. In other words, changes in the concentrations of the products generated by the utilization of ATP in the cell (adenosine diphosphate and inorganic phosphate) effect changes in the rate at which mitochondria utilize those products to resynthesize ATP.