Abstract
The rate of replication of the plasmids colE1, pSC101, R100.1 and pAR132 (an RTF-TC derivative of the drug resistance factor R100.1) has been investigated directly by DNA: DNA hybridization. These rates have been compared, in a dnaAts strain, to that of various markers of the host chromosome at permissive and non-permissive temperatures. Chromosome initiation in the dnaAts strain stops rapidly after a shift to the non-permissive temperature, but plasmids R100.1 and pAR132 do not seem to be affected directly and continue replication for some time. The colE1 replication rate undergoes a large increase after the temperature shift, followed by a rapid decrease to a very low level 25 min after the shift. In contrast pSC101 replication stops immediately after the shift. ColE1 is able to replicate in an integratively suppressed dnaAts strain at 42° C whereas pSC101 stops replication immediately under these conditions. We conclude that R100.1 and its derivative RTF-TC can replicate without a functional dnaA product; that colE1, while affected by a shift in temperature in a dnaAts strain, does not directly require dnaA; and that the plasmid pSC101 has an absolute requirement for dnaA. The absolute requirement of pSC101 for dnaA in the integratively suppressed Hfr strain provides a useful system for further investigations of the dnaA function.