Proliferation and macromolecular synthesis by rat calvarial bone cells grown in various oxygen tensions

Abstract
Perinatal rat calvarial bone cells were isolated by sequential collagenase digestion and grown in oxygen tensions ranging from 1 to 60% O2. Cell proliferation as determined by automated cell counting and DNA content was greatest in the lower oxygen tensions (≥ 9% O2), whereas alkaline phosphatase activity and [35S]sulfate and [14C]proline incorporation were greatest in the higher oxygen tensions (≥ 13% O2). It is concluded that lower oxygen concentrations favor bone cell proliferation, whereas higher oxygen concentrations favor macromolecular synthesis. These findings, when related to the known pO2 of the fracture callus, suggest the following sequence of events: first, at the time of fracture an ingrowth of osteoprogenitor cells, capillary buds, and primitive mesenchymal cells occurs in the fracture site, a region of low pO2; second, a great increase in cellular proliferation accompanied by an initiation of macromolecular synthesis follows; finally, as the pO2 levels begin to increase, cellular proliferation decelerates, accompanied by an increase in macromolecular synthesis.