Abstract
Phloretin and theophylline each exert an immediate inhibitory effect on the Na+-independent, facilitated-diffusion transport system for sugar associated with intestinal epithelial cells. Phloretin inhibits approximately 50% more of the total Na+-independent sugar flux than theophylline. Neither agent has an immediate effect on the Na+-dependent, concentrative sugar transport system, although preincubation of the cells with phloretin causes a significant inhibition. The slowly developing effect is correlated with a decrease in cellular adenosine triphosphate (ATP) and an elevation of intracellular Na+. Other agents which elevate cell Na+ also inhibit Na+-dependent sugar influx, even if ATP levels are not depleted. On the other hand, if ATP is depleted by phloretin under conditions in which the cells do not gain Na+, the inhibitory effect on Na+-dependent sugar flux tends to disappear. The slow-onset phloretin effects are due to transinhibition of the Na+-dependent sugar carrier by cellular Na+. When the passive sugar carrier is inhibited by phloretin or theophylline, the concentrative system can establish an enhanced sugar gradient. Because of the secondary metabolic effects of phloretin, theophylline induces a greater gradient enhancement despite its more limited effect on the passive sugar-transport system. Sugar gradients as large as 20-fold are induced by theophylline, in contrast to 12-fold gradients observed in the presence of phloretin and approximately 7- to 8-fold for untreated cells. These results are discussed in terms of conceptual questions regarding the energetics of Na+-dependent transport systems.

This publication has 33 references indexed in Scilit: