We describe a computer model for predicting ductile-fracture initiation and propagation. The model is based on plastic strain. Fracture starts or a crack extends when the integrated product of the equivalent plastic-strain increment and a function of the mean stress exceeds a critical value over a critical length. This critical length is characteristic of the microstructure of the material. The computer fracture model is calibrated by computer simulation of simple and notched round-bar tension tests and a precracked compact tension test. The model is then used to predict fracture initiation and propagation is the standard Charpy V-notch specimen. The computed results are compared with experiments. The model predicts fracture toughness from tests of standard surveillance specimens from nuclear-reactor pressure vessels and can be applied to fracture calculations for these vessels.