Two-dimensional distributions and column densities of gaseous molecules in protoplanetary disks
Open Access
- 15 June 2001
- journal article
- Published by EDP Sciences in Astronomy & Astrophysics
- Vol. 371 (3), 1107-1117
- https://doi.org/10.1051/0004-6361:20010416
Abstract
We have investigated the two-dimensional () distribution of deuterated molecular species in circumstellar disks around young stellar objects. The abundance ratios between singly deuterated and normal molecules ("D/H ratios") in disks evolve in a similar way as in molecular clouds. Fractionation is caused by rapid exchange reactions that are exothermic because of energy differences between deuterated and normal species. In the midplane region, where molecules are heavily depleted onto grain surfaces, the D/H ratios of gaseous molecules are higher than at larger heights. The D/H ratios for the vertical column densities of NH3, H2O, and HCO+ are sensitive to the temperature, and decrease significantly with decreasing radial distance for AU. The analogous D/H ratios for CH4 and H2CO, on the other hand, are not very sensitive to the temperature in the range ( K) we are concerned with, and do not decrease with decreasing R at AU. The D/H column-density ratios also depend on disk mass. In a disk with a larger mass, the ratios of deuterated species to normal species are higher, because of heavier depletion of molecules onto grains. In the second part of the paper, we report molecular column densities for disks embedded in ambient cloud gas. Our results suggest that CN and HCO+ can be tracers of gaseous disks, especially if the central object is a strong X-ray source. Our results also suggest that the radial distributions of CN, C2H, HCN, and H2CO may vary among disks depending on the X-ray luminosity of the central star.Keywords
All Related Versions
This publication has 31 references indexed in Scilit:
- Deuterium Fractionation in Protoplanetary DisksThe Astrophysical Journal, 1999
- Evolution of Molecular Abundances in Protoplanetary Disks with Accretion FlowThe Astrophysical Journal, 1999
- The Ionization Fraction in Dense Cloud CoresThe Astrophysical Journal, 1998
- Evolution of Molecular Abundance in Protoplanetary DisksThe Astrophysical Journal, 1997
- X‐Ray Ionization of Protoplanetary DisksThe Astrophysical Journal, 1997
- A survey for circumstellar disks around young stellar objectsThe Astronomical Journal, 1990
- Models of the gas-grain interaction - deuterium chemistryMonthly Notices of the Royal Astronomical Society, 1989
- Abundances of the elements: Meteoritic and solarGeochimica et Cosmochimica Acta, 1989
- The C/CO ratio in dense interstellar cloudsThe Astrophysical Journal, 1987
- Abundances of the elements in the solar systemSpace Science Reviews, 1973