Molecular evolution of the MAGUK family in metazoan genomes
Open Access
- 2 August 2007
- journal article
- Published by Springer Nature in BMC Ecology and Evolution
- Vol. 7 (1), 129
- https://doi.org/10.1186/1471-2148-7-129
Abstract
Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner.Keywords
This publication has 44 references indexed in Scilit:
- Convergent and Divergent Ligand Specificity among PDZ Domains of the LAP and Zonula Occludens (ZO) FamiliesJournal of Biological Chemistry, 2006
- Whirlin complexes with p55 at the stereocilia tip during hair cell developmentProceedings of the National Academy of Sciences, 2006
- The Unicellular Ancestry of Animal DevelopmentDevelopmental Cell, 2004
- Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal OriginsScience, 2003
- SWISS-MODEL: an automated protein homology-modeling serverNucleic Acids Research, 2003
- A Novel and Conserved Protein-Protein Interaction Domain of Mammalian Lin-2/CASK Binds and Recruits SAP97 to the Lateral Surface of EpitheliaMolecular and Cellular Biology, 2002
- Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structureJournal of Molecular Biology, 2001
- Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changesJournal of Molecular Biology, 2001
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Refined structure of the complex between guanylate kinase and its substrate GMP at 2·0 Å resolutionJournal of Molecular Biology, 1992