Magnetic Resonance Imaging of Myocardial Infarction Using Albumin-(Gd-DTPA), a Macromolecular Blood-Volume Contrast Agent in a Rat Model

Abstract
Magnetic resonance (MR) contrast enhancement of acute myocardial infarction was studied in rats using albumin-(Gd-DTP A), a paramagnetic macromolecule with prolonged intravascular retention after intravenous injection. Histologic examination and distribution measurements of radiolabeled microspheres confirmed induction of regional myocardial infarction after ligation of the left coronary artery. ECG-gated spin-echo images at 2.0 Tesla, employing short, T1-weighted pulse sequence settings, demonstrated time-persistent and significant (P < .05) enhancement of normal myocardium (66%) and an even greater enhancement of the infarcted area (100%), for as long as 60 minutes after injection of 160 mg/kg albumin-(Gd-DTPA). The contrast difference between normal and infarcted myocardium was increased significantly (P < .05) after administration of albumin-(Gd-DTPA). The prolonged enhancing effects of albumin-(Gd-DTPA) on MR images are useful for evaluating regional differences in blood volume and capillary integrity between normal and infarcted myocardium.