Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes.

Abstract
The activation of photoreceptor GTP-binding protein by rhodopsin was studied in squid photoreceptors and in crossreactions between the squid and bovine proteins. Turbidity changes were observed in the far-red after photoexcitation of rhodopsin with brief flashes and were used to probe interactions between photoreceptor membrane suspensions and soluble protein extracts. Our findings are squid photoreceptors contain a GTP-binding protein detectable by light- and GTP-sensitive turbidity changes and by limited sequence homology of a 46-kilodalton polypeptide to the alpha-subunit of bovine GTP-binding protein; the squid membranes activate bovine GTP-binding protein qualitatively in the same way as bovine rhodopsin; the 46-kilodalton component is present in a membrane-bound fraction but is more abundant in a crude, soluble fraction of squid rhabdomes, and this soluble fraction can interact with either squid or bovine rhodopsin-containing membranes; light-activated GTPase activities in all of these preparations are consistent with the light-induced turbidity changes. These results show that rhodopsin activation of GTP-binding protein is highly conserved in vertebrate and cephalopod photoreceptors. Since squid rhodopsin is immobilized in precisely ordered microvilli, this suggests that activation of GTP-binding protein in cephalopod photoreceptors occurs in the absence of rhodopsin diffusion. The rhodopsin immobility may be compensated by higher mobility of the soluble GTP-binding protein.