Ultrastructural localization of the small GTP‐binding protein Rap 1 in human platelets and megakaryocytes

Abstract
Several functions have been proposed for Rap1B in human platelets, including the regulation of phospholipase (PL) C gamma and Ca2+ ATPase. However, its localization is largely unknown. In the present study we have investigated the subcellular distribution of Rap1 by immunocytochemical techniques using affinity purified polyclonal antibodies raised against residues 121-137 common to the 95% homologous Rap1A and Rap1B proteins. By immunofluorescence, a positive labelling was obtained on intact resting platelets and was abolished after adsorption of the antibodies with the control peptide. Immunoelectron microscopy was then used to further define the subcellular localization of Rap1B in platelets and megakaryocytes (MK). In resting cells, immunolabelling for Rap1B was associated with the plasma membrane, mostly at its inner face, and lined the membrane of the open canalicular system (OCS). Some labelling was also found outlining the alpha-granules, identified as such by a double labelling with an anti-GPIIb-IIIa. On thrombasthenic platelets the same localization was observed. When platelets were stimulated by thrombin, immunolabelling for Rap1B was redistributed to the zones of fusion of the granules with the OCS, and to the plasma membrane with a higher concentration on pseudopods. Human MK expressed Rap1 and the staining revealed the association of the protein with the demarcation membranes and alpha-granules. This study presents a first approach to the localization of a small GTP binding-protein Rap1B in whole platelets and MK, and shows its association with both the plasma and OCS membranes, as well as with the alpha-granule membranes.