The AGBNP2 Implicit Solvation Model
- 31 July 2009
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of Chemical Theory and Computation
- Vol. 5 (9), 2544-2564
- https://doi.org/10.1021/ct900234u
Abstract
The AGBNP2 implicit solvent model, an evolution of the Analytical Generalized Born plus NonPolar (AGBNP) model we have previously reported, is presented with the aim of modeling hydration effects beyond those described by conventional continuum dielectric representations. A new empirical hydration free energy component based on a procedure to locate and score hydration sites on the solute surface is introduced to model first solvation shell effects, such as hydrogen bonding, which are poorly described by continuum dielectric models. This new component is added to the generalized Born and nonpolar AGBNP terms. Also newly introduced is an analytical Solvent Excluded Volume (SEV) model which improves the solute volume description by reducing the effect of spurious high dielectric interstitial spaces present in conventional van der Waals representations. The AGBNP2 model is parametrized and tested with respect to experimental hydration free energies of small molecules and the results of explicit solvent simulations. Modeling the granularity of water is one of the main design principles employed for the first shell solvation function and the SEV model, by requiring that water locations have a minimum available volume based on the size of a water molecule. It is shown that the new volumetric model produces Born radii and surface areas in good agreement with accurate numerical evaluations of these quantities. The results of molecular dynamics simulations of a series of miniproteins show that the new model produces conformational ensembles in substantially better agreement with reference explicit solvent ensembles than the original AGBNP model with respect to both structural and energetics measures.Keywords
All Related Versions
This publication has 129 references indexed in Scilit:
- In Silico Vaccine Design Based on Molecular Simulations of Rhinovirus Chimeras Presenting HIV-1 gp41 EpitopesJournal of Molecular Biology, 2009
- Small Molecule Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atomistic SimulationsJournal of Chemical Theory and Computation, 2009
- ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutionsJournal of Computational Chemistry, 2008
- Prediction of Protein Loop Conformations Using the AGBNP Implicit Solvent Model and Torsion Angle SamplingJournal of Chemical Theory and Computation, 2008
- Recent advances in implicit solvent-based methods for biomolecular simulationsCurrent Opinion in Structural Biology, 2008
- Treating Entropy and Conformational Changes in Implicit Solvent Simulations of Small MoleculesThe Journal of Physical Chemistry B, 2008
- Strengths of Hydrogen Bonds Involving Phosphorylated Amino Acid Side ChainsJournal of the American Chemical Society, 2007
- Generalized Born Model with a Simple, Robust Molecular Volume CorrectionJournal of Chemical Theory and Computation, 2006
- Conformational Equilibrium of Cytochrome P450 BM-3 Complexed with N-Palmitoylglycine: A Replica Exchange Molecular Dynamics StudyJournal of the American Chemical Society, 2006
- Rapid grid‐based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objectsJournal of Computational Chemistry, 2001