Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patagónico Sur, Chile

Abstract
Repeat-pass L-band interferometric synthetic aperture radar (InSAR) data for part of Hielo Patagónico Sur, Chile, were collected by the space-shuttle-based Spaceborne Imaging Radar C (SIR-C) over a 4 day span in October 1994. Three co-registered complex SAR images are used to generate phase-coherence maps, a digital elevation model (DEM) and an ice-velocity map. The phase-coherence maps indicate low coherence in the 5–15 km approaching the termini due to large displacements, ice deformation and melting. However, the coherence is high over nearly all of the remaining imaged icefield. Ice-velocity precision is greater than 2 cm d−1, while the DEM is good to about 25 m. A flow divide between two of the glaciers is mapped by locating a narrow band of near-zero ice velocity. Horizontal ice-surface velocity profiles calculated along flowlines show there is a high degree of spatial variability reaching a peak value of 5.5 m d−1located 3.5 km from the terminus of Glaciar Europa. Longitudinal strain rates along the center lines calculated from these velocities at the locations of the initiation of crevassing are used to compute the tensile strength of ice (169–224 kPa).