Regulation of cerebral blood flow in the ovine fetus

Abstract
The effects on fetal cerebral blood flow (Qc) of changes in the carotid arterial and sagittal sinus venous PO2, PCO2, and oxygen content were studied in the chronically catheterized ovine fetus in utero at 130–140 days of gestation. Forty-seven measurements of Qc were made in 20 fetuses with radioactive microspheres. In 11 of these animals, 84 measurements of cerebral arteriovenous differences of oxygen content were performed, permitting an indirect measurement of cerebral blood flow (Qc*), assuming a constant cerebral metabolic rate. Arterial and, in 11 animals, sagittal sinus blood was withdrawn for analysis of PO2, PCO2, oxygen content, and pH at the time of the flow measurements. Preliminary analysis showed the best predictor of Qc and Qc* to be the reciprocal of the arterial oxygen content (1/CaO2). Multiple linear regression analysis combining the effects of 1/CaO2 with arterial PCO2 (PaCO2) gave the following equations: Qc = 458.8 (1/CaO2) + 2.68 PaCO2 - 107.93 (R2 = 0.68); Qc* = 435.54 (1CaO2) + 2.20 PaCO2 - 75.03 (R2 = 0.86). As a result of the hyperbolic relationship between Qc (and Qc*) and CaO2, changes in CaO2 at the low levels found during intrauterine life exert an important influence on the fetal cerebral circulation.