Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change

Abstract
Colicin Ia, a member of the channel-forming family of colicins, inserts into model membranes in a pH- and lipid-dependent fashion. This insertion occurs with single-hit kinetics, requires negatively charged lipids in the target membrane, and increases in rate as the pH is reduced below 5.2. The low-pH requirement does not act by inducing a secondary structural change in colicin Ia, which remains 66% +/- 4% alpha-helical between pHs 7.3 and 3.1 as determined by circular dichroism. The secondary structure also remains unchanged between pHs 7.3 and 4.2 in the hydrophobic environment provided by the detergent octyl beta-D-glucopyranoside (beta-OG). However, at pH 3.1 in the presence of beta-OG, an 11% +/- 3% decrease in the alpha-helical content is observed. Further, beta-OG induces a change in tryptophan fluorescence and an altered pattern of proteolytic digestion, indicative of a tertiary structural changes. This suggests that colicin Ia undergoes a tertiary but little or no secondary structural change in its transition from a soluble to a transmembrane protein.