Acetylcholine Receptor Synthesis in Retina and Transport to Optic Tectum in Goldfish

Abstract
Previous studies have suggested that the retinotectal system of the goldfish contains a nicotinic acetylcholine receptor (nAChR) that is sensitive to alpha-bungarotoxin. Extracellularly recorded field potentials elicited in response to visual stimulation can be blocked by alpha-bungarotoxin, and alpha-bungarotoxin can interfere with the maintenance of retinotectal synaptic connections. Whether the transmission between the retinal ganglion cells and the tectal cells is mediated by acetylcholine and whether nAChR's exist on the dendrites of tectal cells are questions that remain. The experiments described in this report were designed to determine the site of synthesis of the nAChR's associated with the goldfish retinotectal projection. Radioactive (35S-labeled) methionine was injected into either the eye or the tectal ventricle, and the incorporation of radioactivity into the nAChR was measured by immunoprecipitation. The use of this technique provides evidence that an nAChR associated with the goldfish retinotectal projection is synthesized in the retina and transported to the optic tectum, which suggests a presynaptic site of acetylcholine action on retinal terminals.