Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine

Abstract
Isolated vacuoles from ajmalicine-producing cell suspensions of Catharanthus roseus accumulated the alkaloid ajmalicine. Dissipation of the transtonoplast pH gradient with nigericin abolished ajmalicine accumulation, whereas dissipation of the transtonoplast potential with valinomycin had no effect. Addition of Mg-ATP resulted in a higher ajmalicine accumulation. Serpentine produced by the cells was largely recovered in isolated vacuoles; in contrast, ajmalicine was lost. Ajmalicine was converted in vitro into serpentine by horseradish basic peroxidases (EC 1.11.1.7). In cultured cells there was a striking conformity between the time course of serpentine content and that of the activity of basic peroxidases. Ajmalicine was converted efficiently into serpentine by basic peroxidases extracted from vacuoles and by intact isolated vacuoles. The results are consistent with the hypothesis that ajmalicine accumulates by an ion-trap mechanism and that the accumulated ajmalicine is converted into serpentine inside the vacuoles. By the transformation of ajmalicine into the charged serpentine a trap is created to retain the alkaloids more efficiently in the vacuole.