Response to epidermal growth factor of skin fibroblasts from donors of varying age is modulated by the extracellular matrix

Abstract
The present study was undertaken to investigate the effect of epidermal growth factor(EGF) on the biosynthetic activity of skin fibroblasts from donors of varying age and the modulation of their response to this growth factor by culture in a three-dimensional extracellular matrix. When cultured in monolayeron plastic or at the surface of a collagen gel, EGF specifically inhibited collagen synthesis whatever the age of the donor (from 17 to 84 years, n = 11). This inhibition was paralleled by a significant decrease in the steady-state level of procollagen type I mRNAs. When embedded in a three-dimensional floating collagen lattice, EGF stimulated the non-collagen protein (NCP) synthesis in fibroblasts from younger donors (5 out of 6) while fibroblasts from the older ones were not affected. Collagen production by fibroblasts from younger donors was not inhibited as in monolayer (some being even stimulated) while that of the older donors was inhibited as observed in monolayer. The steady-state level of procollagen type I mRNA was not modified by EGF in the three-dimensional culture. No significant difference was observed in the affinity and the number of EGF receptors of the fibroblasts on plastic or embedded in a collagen lattice between young and aged donors. Our results suggest that the environment of the cells can modulate the reactivity to EGF and reveal differences related to in vivo aging.