Single-electron transistors fabricated from a doped-Si film in a silicon-on-insulator substrate

Abstract
We propose doped-thin-Si-film single-electron transistors (DS-SETs), which are fabricated from a highly doped Si film in a silicon-on-insulator substate by electron-beam lithography with a high-resolution resist (calixarene) and dry etching with CF4 gas. Because the structure can be well controlled, the DS-SET with a 45-nm-diam island shows nearly ideal characteristics of SETs with a charging energy of 1.4 meV. The results demonstrate that single-electron tunneling occurs through a single island without any isolated islands formed in potential fluctuations. We also discuss the discreteness of energy levels in a Si island.