Inhibition of Lyn Function in Mast Cell Activation by SH3 Domain Binding Peptides

Abstract
While Lyn tyrosine kinase has been shown to be necessary for IgE-receptor (FcεRI)-mediated mast cell activation, the mechanism of Lyn activation is not yet understood. Using a micro-electroporation technique to quantitatively introduce peptides into the cytosol of tumor mast cells, we show that proline-rich peptides that preferentially bind Src family SH3 domains block receptor-induced repetitive calcium spikes in a concentration dependent manner. The Src family member Lyn was the likely target, since a series of phage displaying derived peptides with increased Lyn SH3 domain binding specificity inhibited FcεRI-mediated calcium signaling at concentrations consistent with binding to Lyn rather than other Src-type kinases. Furthermore, SH3 binding peptides prevented the plasma membrane translocation of a fluorescently labeled Syk tandem SH2 domain, which binds to phosphorylated FcεRI, suggesting that the peptides specifically block the Lyn-mediated step by which FcεRI cross-linking leads to receptor phosphorylation. Our study suggests that the binding of proline-rich peptides, or corresponding cellular interaction partners, to Lyn SH3 domain suppresses the Lyn-mediated phosphorylatation of FcεRI and calcium signaling.