Abstract
1. Basal and recovery O2 consumption, delatO2, in frog sartorius muscles at 0 degrees C were measured with a polarographic electrode. Reproducible observations were made with the same muscle over many hours. 2. The experimental records had an exponential form except for the early phases of recovery following a single isometric tetanus. Diffusion of O2 within the muscle was adequate to account for this deviation from an exponential time course of recovery. The time constant of the recovery O2 consumption increased with the duration of tetanic stimulation from 5 to 20 sec. 3. Lactate synthesis was measureable in unstimulated aerobic muscles and increased in proportion to total O2 consumption as long as the muscle did not lack O2. The contribution of glycolysis to the total chemical energy production during recovery was 6-9%; for hypoxic muscles it was greater. 4. The resynthesis of phosphorylcreatine and the decrease in inorganic phosphate and free creatine following a tetanus showed an exponential time course similar to recovery O2. Initial concentrations were re-attained within 60 min following a 20 sec tetanus. 5. We conclude that recovery O2 consumpation is a useful and accurate measure of the net chemical energy utilization for a single contraction.