Regulation of Proline Degradation inSalmonella typhimurium

Abstract
The pathway for proline degradation in Salmonella typhimurium appears to be identical to that found in Escherichia coli and Bacillus subtilis. Δ1-Pyrroline-5-carboxylic acid (P5C) is an intermediate in the pathway; its formation consumes molecular oxygen. Assays were devised for proline oxidase and the nicotinamide adenine dinucleotide phosphate-specific P5C dehydrogenase activities. Both proline-degrading enzymes, proline oxidase and P5C dehydrogenase, are induced by proline and are subject to catabolite repression. Three types of mutants were isolated in which both enzymes are affected: constitutive mutants, mutants with reduced levels of enzyme activity, and mutants unable to produce either enzyme. Most of the mutants isolated for their lack of P5C dehydrogenase activity have a reduced level of proline oxidase activity. All the mutations are cotransducible. A genetic map of some of the mutations is presented. The actual effector of the pathway appears to be proline.