Inhibition of Cathepsin K by Nitric Oxide Donors: Evidence for the Formation of Mixed Disulfides and a Sulfenic Acid
- 23 September 1999
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 38 (41), 13574-13583
- https://doi.org/10.1021/bi991028u
Abstract
The cysteine protease cathepsin K is believed to play a key role in bone resorption as it has collagenolytic activity and is expressed predominantly and in high levels in bone resorbing osteoclast cells. The addition of nitric oxide (NO) and NO donors to osteoclasts in vitro results in a reduction of bone resorption, although the mechanism of this effect is not fully understood. The S-nitroso derivatives of glutathione (GSNO) and N-acetylpenicillamine (SNAP) and the non-thiol NO donors NOR-1 and NOR-3 all inhibited the activity of purified cathepsin K in a time- and concentration-dependent manner (IC50 values after 15 min of preincubation at pH 7.5 of 28, 105, 0.4, and 10 μM, respectively). Cathepsin K activity in Chinese hamster ovary cells stably transfected with cathepsin K was also inhibited by the above NO donors with similar potencies. GSNO at 100 μM also completely inhibited the autocatalytic maturation at pH 4.0 of procathepsin K to cathepsin K. The inhibition of cathepsin K by GSNO was rapidly reversed by DTT, but inhibition by NOR-1 was not reversed by DTT, and analysis of the inhibited cathepsin K for S-nitrosylation using the Greiss reaction gave negative results in both cases. Analysis of the protein by electrospray liquid chromatography/mass spectrometry showed that the inhibition of cathepsin K by GSNO resulted in a mass increase of 306 ± 2 Da, consistent with the formation of a glutathione adduct. Prior inhibition of cathepsin K by the active site thiol-modifying inhibitor E-64 blocked the modification by GSNO, indicating that the glutathione adduct is likely formed at the active site cysteine. Treatment of cathepsin K with NOR-1 resulted in a mass increase of between 30 and 50 Da, corresponding to the oxidation of a cysteine to sulfinic and sulfonic acids. Cotreatment of cathepsin K with NOR-1 plus the sulfenic acid reagent dimedone resulted in a mass increase of approximately 141 Da, which is consistent with the formation of a dimedone adduct. This result demonstrates that the NOR-1-dependent formation of cathepsin K sulfinic and sulfonic acids occurs via a sulfenic acid. These results show that inhibition of cathepsin K activity and its autocatalytic maturation represent two potential mechanisms by which NO can exert its inhibitory effect on bone resorption. This work also shows that oxidative thiol modifications besides S-nitrosylation should be considered when the effects of NO and NO donors on critical thiol-containing proteins are investigated.Keywords
This publication has 13 references indexed in Scilit:
- Direct Microsensor Measurement of Nitric Oxide Production by the OsteoclastBiochemical and Biophysical Research Communications, 1999
- Nitric Oxide-induced S-Glutathionylation and Inactivation of Glyceraldehyde-3-phosphate DehydrogenaseJournal of Biological Chemistry, 1999
- The Collagenolytic Activity of Cathepsin K Is Unique among Mammalian ProteinasesJournal of Biological Chemistry, 1998
- Structure-Based Design of Cathepsin K Inhibitors Containing a Benzyloxy-Substituted Benzoyl PeptidomimeticJournal of Medicinal Chemistry, 1998
- Pycnodysostosis, a Lysosomal Disease Caused by Cathepsin K DeficiencyScience, 1996
- Proteolytic Activity of Human Osteoclast Cathepsin KJournal of Biological Chemistry, 1996
- Histamine release from rat peritoneal mast cells and human basophils induced by the free radical generator 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)Inflammation Research, 1996
- Posttranslational Modification of Glyceraldehyde-3-phosphate Dehydrogenase by S-Nitrosylation and Subsequent NADH AttachmentJournal of Biological Chemistry, 1996
- Human Cathepsin O2, a Matrix Protein-degrading Cysteine Protease Expressed in OsteoclastsJournal of Biological Chemistry, 1996
- Kinetics of Nitrosation of Thiols by Nitric Oxide in the Presence of OxygenJournal of Biological Chemistry, 1995