Escape of mitochondrial DNA to the nucleus in ymel yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments

Abstract
Inactivation of Ymelp, a mitochondrially-localized ATP-dependent metallo-protease in the yeast Saccharomyces cerevisiae, causes a high rate of DNA escape from mitochondria to the nucleus as well as pleiotropic functional and morphological mitochondrial defects. The evidence presented here suggests that the abnormal mitochondria of a ymel strain are degraded by the vacuole. First, electron microscopy of Yme1p-deficient strains revealed mitochondria physically associated with the vacuole via electron dense structures. Second, disruption of vacuolar function affected the frequency of mitochondrial DNA escape from ymel and wild-type strains. Both PEP4 or PRC1 gene disruptions resulted in a lower frequency of mitochondrial DNA escape. Third, an in vivo assay that monitors vacuole-dependent turnover of the mitochondrial compartment demonstrated an increased rate of mitochondrial turnover in ymel yeast when compared to the rate found in wild-type yeast. In this assay, vacuolar alkaline phosphatase, encoded by PHO8, was targeted to mitochondria in a strain bearing disruption to the genomic PHO8 locus. Maturation of the mitochondrially localized alkaline phosphatase pro-enzyme requires proteinase A, which is localized in the vacuole. Therefore, alkaline phosphatase activity reflects vacuole-dependent turnover of mitochondria. This assay reveals that mitochondria of a ymel strain are taken up by the vacuole more frequently than mitochondria of an isogenic wild-type strain when these yeast are cultured in medium necessitating respiratory growth. Degradation of abnormal mitochondria is one pathway by which mitochondrial DNA escapes and migrates to the nucleus.