Genetic Differences in the Ethanol Sensitivity of GABA A Receptors Expressed in Xenopus Oocytes

Abstract
Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABAA)- and N-methyl D-aspartate (NMDA)-activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibited NMDA responses equally in the two lines. Thus, genes coding for the GABAA receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.