Histological detection of messenger RNAs with biotinylated synthetic oligonucleotide probes.

Abstract
We achieved histological detection of the messenger RNAs coding for vasopressin, calcitonin, or calcitonin gene-related peptide by using biotinylated synthetic oligonucleotides, and defined the technical parameters enabling optimal detection of these mRNAs. Oligonucleotides labeled by fixation of one biotin at their 5' end or by addition of a biotin-11-dUTP tail at their 3' end can be used to detect mRNAs, although the latter are more sensitive. Streptavidin-alkaline phosphatase revealed with nitroblue tetrazolium-bromo-chloro-indolyl phosphate as substrate makes possible detection of the biotinylated oligonucleotides. Increasing formaldehyde concentration in the fixative decreases the signal intensity; 1% formaldehyde fixation provides the most intense signal. Several controls, including those with addition of unlabeled oligonucleotides to the hybridization buffer, confirm the specificity of mRNA detection. The sensitivity of the biotinylated probes is identical or lower as compared to the corresponding radiolabeled oligonucleotides. Histological and subcellular resolution is greatly enhanced with biotinylated probes. The rat vasopressin probes stain magnocellular neurons in the supraoptic and paraventricular nuclei and, under optimal conditions, parvocellular neurons in the suprachiasmatic nucleus. Vasopressin mRNA is present in the cytoplasm of the cell bodies and in the roots of certain processes. Calcitonin and calcitonin gene-related peptide mRNA are found co-localized in the cytoplasm of the same tumor cells in human medullary thyroid carcinoma.

This publication has 11 references indexed in Scilit: