Effects of dry grinding on two kaolins of different degrees of crystallinity

Abstract
Grain-size distribution, specific surface, thermal analysis, electron microscopy and X-ray diffraction were used to study the effect of dry grinding on the structure and properties of two kaolins of different degree of crystallinity. Grinding caused particles to fragment and resulted in the formation of stable large spheroidal aggregates of fine particles. These two processes were not clearly separated by a specific grinding time, but occurred in parallel shortly after grinding was started, although aggregate formation persisted at longer grinding times. The variation in the specific surface area during grinding was found to be dependent on these two processes and on the particle size and crystallinity of the initial kaolin. DTA and XRD data and the amount of water released at different temperatures revealed grinding to gradually destroy the kaolinite structure and cause the loss of hydroxyl ions and the formation of others that were subsequently removed at low and medium temperatures. An explanation for the process whereby the new hydroxyl ions are formed is provided.