Ion-Exchange Properties of lon-Sieve-Type Manganese Oxides Prepared by Using Different Kinds of Introducing Ions

Abstract
Three ion-sieve-type manganese oxides, HMnO(Li), HMnO(Na), and HMnO(K), were prepared by acid treatments of Li+-, Na+-, and K+-introduced manganese oxides, respectively. Three oxides were obtained from γ-MnO2 and the corresponding alkali metal hydroxides by heating at 600°C. The ion-exchange properties of the adsorbents were investigated by pH titration, Kd measurements, and the adsorption of metal ions from seawater. The selectivity sequences of alkali metal ions were Na+ < Cs+ < Rb+ < K+ < Li+ for HMnO(Li) and Li+ Na+ < Cs+ < K+ < Rb+ for HMnO(Na) and HMnO(K). The high selectivity of Li+ on HMnO(Li) can be ascribed to an ion-sieve effect of spinel-type manganese oxide which was produced from LiMn2O4 Since HMnO(Na) and HMnO(K) had [2 × 2] tunnels of edge-shared [MnO6] octahedra, the high selectivities of K+ and Rb+ on these samples were used to explain that the sizes of the [2 × 2] tunnels were suitable for filling ions of about 1.4 Å in radius in a stable configuration. The order of metal-ion uptake from seawater was Sr2+ < K+ < Mg2+ < Ca2+ < Na+ < Li+ for HMnO(Li), Li+ < Sr2+ < Mg2+ < Ca2+ < Na+ < K+ for HMnO(Na), and Li+ < Sr2+ < Ca2+ < Mg2+ < K+ < Na+ for HMnO(K).

This publication has 19 references indexed in Scilit: