Abstract
A new silver-coated alumina/glass substrate was prepared by a chemical reduction method at room temperature. The substrate was found to exhibit strong surface-enhanced scatterings for crystal violet (CV), p-nitrophenol (PNP), p-nitrobenzoic acid (PNBA), and pyrene. Optimization of silver deposition time was achieved by using CV as an analyte. Lower limits of detection were determined for these compounds to demonstrate the analytical potential of the new substrate. Enhancement factors of ∼106 and ∼107 were determined from comparisons of the surface-enhanced Raman scattering (SERS) intensities of mono-molecular layers with the normal Raman intensities for PNP and PNBS, respectively. Three different methods of sample applications were adapted and tested. The reusability of the substrates was tested by recording the surface-enhanced resonance Raman scattering (SERRS) spectra of CV at different conditions.