Cyclopropane-Based Conformational Restriction of Histamine. (1S,2S)-2-(2-Aminoethyl)-1-(1H-imidazol-4-yl)cyclopropane, a Highly Selective Agonist for the Histamine H3 Receptor, Having a cis-Cyclopropane Structure

Abstract
A series of cyclopropane-based conformationally restricted analogues of histamine, the “folded” cis-analogues, i.e., (1S,2R)-2-(aminomethyl)-1-(1H-imidazol-4-yl)cyclopropane (11), (1S,2S)-2-(2-aminoethyl)-1-(1H-imidazol-4-yl)cyclopropane (13), and their enantiomers ent-11 and ent-13, and the “extended” trans-analogues, i.e., (1R,2R)-2-(aminomethyl)-1-(1H-imidazol-4-yl)cyclopropane (12) and its enantiomer ent-12, were designed as histamine H3 receptor agonists. These target compounds were synthesized from the versatile chiral cyclopropane units, (1S,2R)- and (1R,2R)-2-(tert-butyldiphenylsilyloxy)methyl-1-formylcyclopropane (14 and 15, respectively) or their enantiomers ent-14 and ent-15. Among the conformationally restricted analogues, the “folded” analogue 13 (AEIC) having the cis-cyclopropane structure was identified as a potent H3 receptor agonist, which showed a significant binding affinity (Ki = 1.31 ± 0.16 nM) and had an agonist effect (EC50 value of 10 ± 3 nM) on the receptor. This compound owes its importance to being the first highly selective H3 receptor agonist to have virtually no effect on the H4 subtype receptor. These studies showed that the cis-cyclopropane structure is very effective in the conformational restriction of histamine to improve the specific binding to the histamine H3 receptor.

This publication has 25 references indexed in Scilit: