Photoluminescence studies of polycrystalline diamond films

Abstract
The photoluminescence spectra of polycrystalline diamond films prepared by filament assisted chemical vapor deposition are dominated by a defect band with a strong zero phonon line near 1.68 eV and weak phonon replicas at lower energies. The 1.68 eV line is blucshifted from the 1.675 eV zero phonon line associated with the neutral vacancy in bulk diamond. The line shape and position of the 1.68 eV line are shown to depend on substrate material (Si, Mo, Ni). The 1.68 eV emission for Ni and Mo substrates is interpreted in terms of the stress shifted and broadened neutral vacancy emission. The broader 1.68 eV line observed for Si substrates may indicate the additional effects of Si absorption by the diamond films. Films prepared by an oxygen-acetylene flame technique exhibit two additional luminescence bands with zero phonon lines at 1.95 and 2.16 eV. These lines have been tentatively assigned to nitrogen-vacancy complexes. The temperature dependence (6 K–300 K) of the luminescence of a free-standing diamond film, which had been deposited on a molybdenum substrate, is comparable to similar observations reported for bulk diamond. We have also observed a strong dependence of the PL spectra radially across a given combustion film and associated this with details of the flame chemistry.