Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films

Abstract
The thermal behavior of ultrathin films of poly-(2)-vinylpyridine spin-cast on acid-cleaned silicon oxide substrates is considered. The interaction between the polymer and the substrate is polar in nature and very favorable. As a means of examining the thermal properties of the films, x-ray reflectivity is used to measure the temperature dependence of the film thickness. This experimentally measured thickness-temperature data is used to determine transition temperatures and thermal expansivities. Significantly increased transition temperatures (20-50 °C above the measured bulk glass transition temperature) are observed in ultrathin polymer films. The transition temperature increases with decreasing film thickness, while the degree of thermal expansion below the transition temperature decreases with decreasing film thickness. If one assumes that a region of reduced chain mobility exists near the solid substrate-polymer interface, an analysis of the measured thermal expansion behavior below the transition temperature indicates that the length scale of substrate interactions is on the order of the macromolecular size.