Expression of A20 in the vessel wall of rat-kidney allografts correlates with protection from transplant arteriosclerosis
- 1 January 2003
- journal article
- Published by Wolters Kluwer Health in Transplantation
- Vol. 75 (1), 3-9
- https://doi.org/10.1097/00007890-200301150-00002
Abstract
Background. Chronic rejection with development of transplant arteriosclerosis is the major culprit involved in loss of kidney allografts. The allografts’ fate was thought to depend on the intensity of the host immune responses and the potency of immunosuppressive regimens. Recent data suggests that grafts contribute to their own survival by way of up-regulation of “cytoprotective” genes. Methods. We analyzed the expression of four cytoprotective genes, A20, Bcl-2, Bcl-xL and heme oxygenase (HO)-1, in three rat renal allograft models of chronic rejection: Fisher 344–Lewis (F344/Lew), Dark Agouti–Brown Norway (DA/BN), and DA–Wistar-Furth (WF). We chose these genes for their known anti-inflammatory and anti-apoptotic function in endothelial cells (EC) and the atheroprotective function of A20 in smooth muscle cells (SMC). Results. Twenty-eight and 9 weeks following transplantation, F344/Lew and DA/BN transplants had stable graft function. Histopathologic analysis showed moderate tissue damage, minimal cellular infiltrates, and preserved vascular integrity correlating with high expression of A20 in SMC. Conversely, impaired allograft function in the DA/WF combination with substantial transplant arteriosclerosis was noted in 60% of the grafts correlating with absent or decreased A20 expression in EC and SMC. In all combinations, expression of HO-1, Bcl-2, and Bcl-xL colocalized with infiltrating cells and was not informative on the graft status. Conclusions. We demonstrate for the first time a strict correlation between A20 expression in the vessel and the absence of transplant arteriosclerosis in rat kidney-allograft models. This data is similar to data obtained in human kidney allografts and suggests that A20 may represent a novel therapeutic target for the prevention of chronic allograft rejection.Keywords
This publication has 22 references indexed in Scilit:
- Heme protein-induced chronic renal inflammation: Suppressive effect of induced heme oxygenase-1Kidney International, 2001
- Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-κBJournal of Clinical Investigation, 1999
- The Banff 97 working classification of renal allograft pathologyKidney International, 1999
- Novel Approach to Specific Growth Factor Inhibition in VivoThe American Journal of Pathology, 1999
- Late blockade of T cell costimulation interrupts progression of experimental chronic allograft rejection.Journal of Clinical Investigation, 1998
- Long-Term Kidney Isografts Develop Functional and Morphologic Changes That Mimic Those of Chronic Allograft RejectionAnnals of Surgery, 1994
- GLOMERULAR CAPILLARY PRESSURES IN LONG-SURVIVING RAT RENAL ALLOGRAFTSTransplantation, 1993
- Regulation of differentiated properties and proliferation of arterial smooth muscle cells.Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 1990
- THE ROLE OF ENDOTHELIAL CELLS IN INFLAMMATIONTransplantation, 1990
- CHRONIC KIDNEY ALLOGRAFT REACTIONS IN RATSTransplantation, 1969