A Pod Leakage Technique for Phloem Translocation Studies in Soybean (Glycine max [L.] Merr.)

Abstract
Radioactive photosynthetic assimilates, translocated to a soybean (Glycine max [L.] Merr. `Fiskeby V') pod can be measured directly by excising the stylar tip of the pod under 20 mm ethylenediaminetetraacetate solution (pH 7.0) and allowing the material to leak into the solution. Pods at the source node received approximately 50% of the 14C exported from the source leaf to the pod and leaked approximately 1 to 3% of this into the solution. More than 90% of the 14C that leaked from the pods was found in the neutral fraction and, of this, about 93% was in sucrose. Fifteen amino acids were identified in the leakage including: alanine, arginine, asparagine, γ-aminobutyric acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, serine, threonine, tyrosine, and valine. The majority of the 14C in the basic fraction was found in serine (≃30%) and asparagine (≃23%). The inorganic ions K, Ca, P, Mg, Zn, and Fe were found in the leakage component. Nitrate was not detectable in the collected leakage solution. The absence of NO3 and the large proportion of the label in sucrose suggest a possible phloem origin for most of the material. The technique provides an uncomplicated, reproducible means of analyzing the material translocated into and through the soybean pod, as well as following the time course of label arrival at the pod.