Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion

Abstract
Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species,Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 103-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10mm zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA<Cs<Li<Tris<Rb<Na<K for the potassium channel.

This publication has 43 references indexed in Scilit: