High-current large-bandwidth photosensor on standard CMOS processes

Abstract
On standard CMOS processes, basically two photosensors may be designed: photodiodes or vertical bipolar phototransistors. A trade-off must be found between the area of the sensor, its sensitivity and its bandwidth. In most designs, the high sensitivity of the sensor is a key point and led to choosing a phototransistor based solution. However this choice is made at the expense of the bandwidth of the sensor. For small currents, an analysis shows that it is mainly proportional to the base-emitter capacitance Cbe and to the collector current. Hence, in the case of a floating base bipolar and for a given current, the only way of reducing Cbe is to decrease the emitter area. On the other hand, the sensitivity is to be preserved. We have proposed and tested an original sensor based on the splitting of phototransistors. The basic idea is to use minimum size emitter bipolar transistors and to increase their collector-base junction perimeter. Thanks to this design, for a given sensor area, the bandwidth has been improved by a factor of 3 and the sensitivity has been preserved. This solution has been successfully used on an operational retina performing stochastic computations at video rates. In particular, thanks to our design, we have been able to successfully implement a 150 by 50 micrometer2 optoelectronic random generator providing up to 100,000 random variables per second.