Noninvasive Glucose Monitoring in Diabetic Patients: A Preliminary Evaluation

Abstract
Noninvasive monitoring of blood/tissue glucose concentrations has been successfully accomplished in individual diabetic subjects by using near-infrared (NIR) spectroscopy coupled with chemometric methods. Three different spectrometer configurations were tested: a) a Fourier-transform infrared spectrometer with an indium antimonide detector; b) a grating monochromator equipped with a silicon (Si) array detector, without fiber optics; and c) a grating monochromator equipped with an Si detector, with fiber-optic sampling. NIR spectra were obtained from diabetic subjects by transmission through the finger during a meal-tolerance test. The maximum range of observed plasma glucose concentrations obtained from the blood samples was 2.5-27 mmol/L. The NIR spectra were processed by using the chemometric multivariate calibration methods of partial least squares and principal component regression. The best calibration yielded a cross-validated average absolute error in glucose concentration of 1.1 mmol/L. This predictive ability suggests that noninvasive glucose determinations by NIR/chemometrics is a viable analytical method.