Improved coupled-mode theory for anisotropic waveguide modulators

Abstract
An improved coupled-mode theory for the propagation of modulated light waves in anisotropic dielectric waveguides is presented. Starting from Maxwell's equations, a partial differential equation is derived to describe mode-coupling between two normal modes which may propagate in anisotropic waveguide systems under modulation. The theory is applied to the analysis of typical waveguide modulators; examples for LiNbO3 phase modulator, Mach-Zehnder, and directional coupler modulator are presented. The theory is applicable to both bulk and waveguide modulators/switches from DC to the high-frequency band. The only limitation is that the modulating wave has to propagate collinearly to the light waves