Method for numerical simulations of metastable states

Abstract
We present a numerical simulation of metastable states near a first-order phase transition in the example of a U(1) lattice gauge theory with a generalized action. In order to make measurements in these states possible their decay has to be prevented. We achieve this by using a microcanonical simulation for a finite system. We then obtain the coupling constant (inverse temperature) as a function of the action density. It turns out to be nonmonotonic and hence not uniquely invertible. From it we derive the effective potential for the action density. This effective potential is not always convex, a property that seems to be in contradiction with the standard lore about its convexity. This apparent "paradox" is resolved in a discussion about different definitions of the effective potential.