Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine.

Abstract
BALB/c mice vaccinated with a temperature-sensitive mutant (TS-4) of Toxoplasma gondii develop complete resistance to lethal challenge with a highly virulent toxoplasma strain (RH). This immunity is known to be dependent on IFN-gamma synthesis. In vitro and in vivo T cell depletions were performed in order to identify the subsets responsible for both protective immunity and IFN-gamma production. When stimulated with crude tachyzoite Ag in vitro, CD4+ cells from vaccinated mice produced high levels of TH1 cytokines (IL-2 and IFN-gamma) but not TH2 cytokines (IL-4 and IL-5). CD8+ cells, in contrast, produced less IFN-gamma and no detectable IL-2. Nevertheless, they could be induced to synthesize IFN-gamma when exposed in culture to exogenous IL-2. In vivo treatment with anti-CD4 plus anti-CD8 or anti-IFN-gamma antibodies during challenge infection completely abrogated resistance to T. gondii. In contrast, treatment with anti-CD4 alone failed to reduce immunity, whereas anti-CD8 treatment partially decreased vaccine-induced resistance. These results suggest that although IFN-gamma and IL-2-producing CD4+ lymphocytes are induced by vaccination, IFN-gamma-producing CD8+ T cells are the major effectors of immunity in vivo. Nevertheless, CD4+ lymphocytes appear to play a synergistic role in vaccine-induced immunity, probably through the augmentation of IFN-gamma synthesis by the CD8+ effector cells. This hypothesis is supported by the observation that when giving during vaccination, as opposed to after challenge, anti-CD4 antibodies are capable of blocking protective immunity.