Wannier-Stark resonances in optical and semiconductor superlattices

  • 24 November 2001
Abstract
In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static force. Originally this problem was formulated for a crystal electron subject to a static electric field and it is nowadays known as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems such as optical lattices or semiconductor superlattices.