Complete decoding of triple-error-correcting binary BCH codes

Abstract
An extensive study of binary triple-error-correcting codes of primitive lengthn = 2^{m} - 1is reported that results in a complete decoding algorithm whenever the maximum coset weightW_{max}is five. In this regard it is shown thatW_{max} = 5when four dividesm, and strong support is provided for the validity of the conjecture thatW_{max} = 5for allm. The coset weight distribution is determined exactly in some cases and bounded in others.

This publication has 4 references indexed in Scilit: