Quantification of Pathways of Glucose Utilization and Balance of Energy Metabolism of Rabbit Reticulocytes

Abstract
In this work it is demonstrated that glucose constitutes the main substrate of energy metabolism of rabbit reticulocytes under aerobic conditions in the presence of 5 mM glucose. Amino acids and fatty acids are minor sources of energy. The shares of processes utilizing glucose in reticulocytes were estimated from tracer experiments. A new mathematical technique used permits the derivation of closed terms for the specific radioactivity of single positions of C atoms of the metabolites of the citrate cycle. By means of regression analysis, the undeter-mined flux rates in the citrate cycle were calculated. On the basis of the data an overall balance sheet of glucose utilization and of ATP generation is given. About 45% of the glucose of reticulocytes is catabolized via the citrate cycle, about the same percentage yields lactate. Only 2% of the glucose was oxidized in the oxidative pentose pathway whereas the remainder is used for the formation of serine and glycine required for hemoglobin synthesis. These results are related to knowledge about the main processes utilizing ATP in reticulocytes, i.e. the synthesis of hemoglobin and the energy-dependent proteolysis. Our approach to the investigation of metabolic relations in the reticulocytes can be applied to other tissues in which equilibria between large metabolite pools play a role