On the performance of particle tracking

Abstract
The sources of error associated with the use of particle-tracking techniques in the measurement of velocity and vorticity fields in moderately three-dimensional turbulent flows are analysed. The two dominant sources of error are the visualisation error, resulting from the limited resolution of the optical data acquisition system, and the sampling error, due to limited particle concentration. Their relative importance is discussed. The performance of the interpolation methods used to translate the measurements from the positions of the particles to an arbitrary point is discussed, and a non-parametric algorithm is given to estimate the errors that arise, using only the available data. The smoothing of the results to produce flow maps of a given statistical significance is also discussed. Finally, the method is validated using simultaneous laser-Doppler velocity measurements. The system is applied to measurements of the near wake of a circular cylinder. Velocity and vorticity maps are provided which throw light on the process by which the large eddies form and relax to their final equilibrium configurations.