Continuous Adsorption and Recovery of Cr(VI) in Different Types of Reactors

Abstract
This study reports the results of experiments on continuous adsorption and desorption of Cr(VI) ions by a chemically modified and polysulfone‐immobilized biomass of the fungus Rhizopus nigricans. A fixed quantity of polymer‐entrapped biomass beads corresponding to 2 g of dry biomass powder was employed in packed bed, fluidized bed, and stirred tank reactor for monitoring the continuous removal and recovery of Cr(VI) ions from aqueous solution and synthetic chrome plating effluent. Parameters such as flow rate (5, 10 and 15 mL/min), inlet concentration of Cr(VI) ions (50, 100, 150 and 250 mg/L) and the depth of biosorbent packing (22.8, 11.2 and 4.9 cm) were evaluated for the packed bed reactor. The breakthrough time and the adsorption rates in the packed bed column were found to decrease with increasing flow rate and higher Cr inlet concentrations and to increase with higher depths of sorbent packing. To have a comparative analysis of Cr adsorption efficiency in different types of reactors, the fluidized bed reactor and stirred tank reactor were operated using the same quantities of biosorbent material. For the fluidized bed reactor, Cr(VI) solution of 100 mg/L was pumped at 5 mL/min and fluidized by compressed air at a flow rate of 0.5 kg/cm.2 The stirred tank reactor had a working volume of 200 mL capacity and the inlet/outlet flow rate was 5 mL/min. The maximum removal efficiency (mg Cr/g biomass) was obtained for the stirred tank reactor (159.26), followed by the fluidized reactor (153.04) and packed bed reactor (123.33). In comparison to the adsorption rate from pure chromate solution, approximately 16% reduction was monitored for synthetic chrome plating effluent in the packed bed. Continuous desorption of bound Cr ions from the reactors was effective with 0.01 N Na2CO3 and nearly 80–94% recoveries have been obtained for all the reactors.