Stress‐Induced Dopamine Release in the Neostriatum: Evaluation of the Role of Action Potentials in Nigrostriatal Dopamine Neurons or Local Initiation by Endogenous Excitatory Amino Acids

Abstract
It has been hypothesized that excitatory amino acids can initiate dopamine release in neostriatum. We examined whether the increase in extracellular dopamine in neostriatum produced by acute stress reflects presynaptic initiation of dopamine release by endogenous excitatory amino acids. Thirty minutes of intermittent tail-shock stress significantly elevated extracellular concentrations of dopamine, glutamate, aspartate, and γ-aminobutyric acid in neostriatum of freely moving rats as measured with in vivo microdialysis. Local infusion of the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonovaler-ate or the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione via the dialysis probe did not attenuate the stress-induced increase in extra cellular dopamine. In fact, the increase was prolonged in rats treated with specific excitatory amino acid receptor antagonists. Infusion of tetrodotoxin into medial forebrain bundle increased extra cellular glutamate and aspartate in neostriatum yet reduced basal dopamine in extra cellular fluid to below the limit of detection of the assay and eliminated the stress-induced increase in extra cellular dopamine. These findings fail to support the hypothesis that the stress-induced increase in extra cellular dopamine in neostriatum is initiated locally by excitatory amino acids. Rather, the effects of stress on extra cellular dopamine seem to be determined by impulse propagation in dopamine neurons.