Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system

Abstract
Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS) plays a fundamental role in kidney development. All of the components of the RAS are expressed in the metanephros. Mutations in the genes encoding components of the RAS in mice or pharmacological inhibition of RAS in animals or humans cause diverse congenital abnormalities of the kidney and lower urinary tract. The latter include renal vascular abnormalities, abnormal glomerulogenesis, renal papillary hypoplasia, hydronephrosis, aberrant UB budding, duplicated collecting system, and urinary concentrating defect. Thus, the actions of angiotensin (ANG) II during kidney development are pleiotropic both spatially and temporally. Whereas the role of ANG II in renovascular and glomerular development has received much attention, little is known about the potential role of ANG II and its receptors in the morphogenesis of the collecting system. In this review, we discuss recent genetic and functional evidence gathered from transgenic knockout mice and in vitro organ and cell culture implicating the RAS in the development of the ureteric bud and collecting ducts. A novel conceptual framework has emerged from this body of work which states that stroma-derived ANG II elicits activation of AT1/AT2 receptors expressed on the ureteric bud to stimulate branching morphogenesis as well as collecting duct elongation and papillogenesis.